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CHARACTERISTICS OF A VISCOPLASTIC MATERIAL IN THE COUETTE FLOW

UDC 539.3S. L. Gavrilenko,1 S. V. Shil’ko,1 and R. A. Vasin2

A model governing a steady flow of a viscoplastic material between coaxial cylinders is proposed.
Nonlinear velocity sensitivity typical of superplastic materials is taken into account. An algorithm
of calculating the characteristics of the material is developed. The algorithm is based on the experi-
mental data on moments and angular velocities of the rotating coaxial cylinders. The stability of the
algorithm to errors in the initial data is estimated.

Introduction. In some technological processes of plastic metal working, for example, in producing articles
by deep drawing, a developed plastic flow occurs. A viscoplastic flow is also observed in producing polymer alloys
by mechanical activation in mixers and extruders; a similar flow occurs in a grease layer between machine parts or
in a paint layer in printers. Viscous flow is typical of the most technological processes based on the superplasticity
phenomenon [1, 2].

In mathematical simulation and optimization of the aforementioned technological processes, it is necessary
to know viscoplastic characteristics of the material. To this end, experiments are performed to study the shear
state, which occurs, for example, under conditions of the material flow in the clearance between rotating coaxial
cylinders (Couette flow) [3, 4]. In these experiments, the angular velocities and moments of rotation of the cylinders
are recorded, and the material constants are determined by processing experimental data.

In calculations, a viscoplastic model with nonlinear viscosity and zero yield point is usually used. However,
taking into account the critical stress is of principal importance. It is, therefore, necessary to develop a method of
determining the characteristics of a viscoplastic material with allowance for the critical stress and nonlinear velocity
sensitivity. One of these methods is considered in the present paper.

Formulation of the Problem. We consider a steady flow of a viscoplastic material in the clearance
between infinetely long rigid coaxial cylinders of radii a and b (b > a), which rotate with angular velocities ωa
and ωb about the common axis under the action of the moments Ma and Mb, respectively (Fig. 1).

Let the circumferential velocity of the flow be a continuous and monotonic function of the radius in the entire
region occupied by the material and adhesion conditions be specified on the boundaries. Leonova [5] determined
the conditions under which stagnation zones are absent for the motion of a viscoplastic medium between coaxial
cylinders. The values of parameters used in the numerical experiments considered below satisfy these conditions.

We introduce a cylindrical system of coordinates (r, ϕ, z) in such a manner that the z axis is the axis of
rotation of the cylinders. In this case, the equations governing the motion of the medium in the clearance have the
form [4]
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Fig. 1. Model of interaction between coaxial cylinders and
a viscoplastic material in the clearance.

where σij is the stress tensor, ρ is the density of the medium, Fi are the mass forces, and ai are the components of
the acceleration vector of the material particles.

We use the following relations for an incompressible material:

Sij = σij − σδij = (2τ/H)ξij , σ = σkk/3,
(2)

τ = τ0 +K(H/ε̇0)m for τ > τ0, H = 0 for τ < τ0.

Here ξij are the components of the strain-rate tensor deviator, Sij are the components of the stress tensor deviator,
δij is the Kronecker symbol, ε̇0 is the characteristic strain rate, τ0 is the yield point (critical stress), τ is the
shear-stress intensity, H is the intensity of the shear-strain rates, and m and K are the material constants.

Boundary Conditions. We assume that the kinematic boundary conditions of adhesion are satisfied.
Thus, the boundary conditions for the velocity field Ur, Uϕ, Uz have the form Uϕ(a) = ωaa and Uϕ(b) = ωbb.

The aim of this study is to determine parameters of the mathematical model of a viscoplastic material τ0,
K, and m for the known parameters ωa, ωb, Ma, and Mb.

Method of the Solution. It follows from the formulation of the problem that Uz = Ur = 0 and Uϕ = Uϕ(r).
Therefore, the only nonzero component of the acceleration is ar = −U2

ϕ/r and the only nonzero component of the
strain-rate tensor is ξrϕ = (dUϕ/dr − Uϕ/r)/2. By virtue of (2), the stress tensor becomes

σij =

 −p σrϕ 0
σrϕ −p 0
0 0 −p

 . (3)

With allowance for (1) and (3), we obtain the equations of motion of a continuum
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where p is the pressure. Integrating the last equation, we infer that, regardless of the determining relation of the
material, the relation σrϕ = C1/r

2 holds, where C1 is the integration constant, which generally depends on time.
We calculate the shear-stress intensity τ =

√
SijSij/2 = |σrϕ| = |C1|/r2. The intensity of the shear-strain

rates is given by H =
√

2ξijξij = r|d(Uϕ/r)/dr|.
Solution of the Direct Problem. We consider the solution of the direct problem (solutions of the direct

problems for linear and nonlinear viscous liquids and Shvedov–Bingham plastic are given in [6]).
Taking (2) into account, from the expression for σrϕ, we obtain
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where n = 1/m.
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Integration of (4) yields
Uϕ
ε̇0

=
r

(K)n

∫
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)n
dr. (5)

For numerical calculations, we choose the following parameters: a = 10 cm, τ = 100 kg/cm2, and ε̇0 =
10−1 sec−1. We introduce the dimensionless quantities K ′ = (K/τ) · 103, τ ′0 = (τ0/τ) · 103, U ′ϕ = Uϕ/(aε̇0),
r′ = r/a, H ′ = H/ε̇0, and C ′1 = (C1/(τa2)) · 103.

In the dimensionless variables, equality (5) is written in the form
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Substituting (6) into the boundary conditions

U ′ϕ(b/a)/r′ = ωb/ε̇0, (7)

U ′ϕ(1)/r′ = ωa/ε̇0 (8)

and subtracting (8) from (7), we obtain the equation
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where ∆ωba = ωb − ωa and C
′(i)
1 is the value of the constant determined in the ith experiment.

Performing two additional numerical experiments, we obtain two similar equations
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Eliminating K ′ by dividing (9) and (10) by (11), we arrive at two equations for two unknowns
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where C ′(i)1 are determined from the equations
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We reduce the last equation to the form
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We solve these equations for the independent variable which enters the integral by the simple iterative method.
Using the iterative formula 1/C ′(i)1n+1 = ϕ(C ′(i)1n ), where ϕ(C ′(i)1n ) is the right side of Eq. (14), we find C ′(i)1 . Changing
the variable 1/C ′(i)1 = x, we obtain
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Fig. 2. The critical stresses τ ′01 (curves 1) and τ ′02 (curves 2) versus the parameter n in the neighborhood of the
intersection point (τ ′0, n): (a) τ ′0 = 400 and n = 1.3; (b) τ ′0 = 700 and n = 3.4.

Introducing the new variables K ′ = 1013/3K1 and x = x1/1013/3, we obtain
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The calculations show that, for K1 = 1, ∆ωba/ε̇0 = 1, 0.5, and 0.25, and n = 1.1–4.0 and τ ′0 = 100–6000,
the quantity x1 is of order of unity. The values of x1 were calculated with an accuracy of 10−9. This accuracy is
satisfied after 10 iterations for any n and small values of τ ′0 (τ ′0 = 100–1000) and after about 20 iterations for large
values of τ ′0.

The effect of an error in specifying the initial data on the convergence of the algorithm was studied. If the
initial data deviate from their exact values by 10–30%, the number of iterations is equal to 6 or 7 for small values
(τ ′0 = 100–1000) and 20–25 for τ ′0 = 3000–6000.

Solution of the Inverse Problem. Leonova [5] proposed a method for verification of the model of a
linear-viscoplastic material. The problem considered in the present paper is more complex. To solve it, the following
method is proposed. The values of the functions F1(τ ′0, n) and F2(τ ′0, n), which are the left sides of Eqs. (12) and
(13), are calculated and the intervals where these functions change their sign are found. The curves of intersection
of the plane z = 0 with the surfaces z = F1 and z = F2 are determined by the bisection method. The points of
intersection of these curves are found. To solve this problem, the left sides of Eqs. (12) and (13) were calculated for
different values of τ ′0 and n. For specific values of x1, the functions F1(τ ′0, n) and F2(τ ′0, n) that enter (12) and (13)
were calculated for the step in τ ′0 equal to 100. In particular, calculations were performed for five pairs of values:
1) τ ′0 = 400 and n = 1.3; 2) τ ′0 = 800 and n = 1.6; 3) τ ′0 = 1000 and n = 1.9; 4) τ ′0 = 400 and n = 2.3; 5) τ ′0 = 700
and n = 3.4.

The regions in which the functions F1 and F2 change their sign were determined and the roots of the
equations F1(τ ′0, n) = 0 and F2(τ ′0, n) = 0 were found by the bisection method. It was shown that each curve of
intersection of the surface z = F1 (i = 1, 2) with the plane z = 0 is close to a straight line and it is a single-valued
function of τ ′0(n). The solution was determined with a high accuracy. In all the cases, for a fixed value of n, the
functions F1(τ ′0, n) and F2(τ ′0, n) decrease as τ ′0 increases and increase with n.

To find common points of the functions F1(τ ′0, n) = 0 and F2(τ ′0, n) = 0, the graphs of these functions were
plotted in the coordinates τ ′0 and n.

The behavior of the functions τ ′01 = f1(n) and τ ′02 = f2(n) in the neighborhood of the point of their
intersection was also studied. It was found that the derivatives of the functions differ by approximately a factor of
1.5 at the points of intersection of the curves τ ′01(n) and τ ′02(n). It follows that these curves do not coincide with
one another in the neighborhood of the intersection points. For n = 1.1–4.0 and τ ′0 = 100–6000, no other points of
intersection of the curves F1(τ ′0, n) = 0 and F2(τ ′0, n) = 0 were found.

Figure 2 shows the curves τ ′01(n) and τ ′02(n) [F1(τ ′0, n) = 0 and F2(τ ′0, n) = 0] in the neighborhood of their
intersection points.

We consider the approximate solution of the equation
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It should be noted that the integral in (15) cannot be evaluated analytically for an arbitrary n. Taking into account
that τ ′0(r′)2/C ′1 < 1, performing expansion using the binomial theorem, and retaining two terms in the series, we
obtain the approximate expression for U ′ϕ(r′):
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Integrating and multiplying both sides of (16) by r′, we obtain
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The constants C ′1 and C ′2 are found from the kinematic boundary conditions Uϕ(a) = ωaa and Uϕ(b) = ωbb or
U ′ϕ(1) = ωa/ε̇0 and Uϕ(b/a) = ωbb/(aε̇0). The boundary condition implies
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Dividing (16b) by b/a and subtracting (16a) from (16b), we obtain the equation for C ′1:(C ′1
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We introduce the parameters x̃ = 1 − (a/b)2n, ỹ = (a/b)2n−2 − 1, and z̃ = 1 − (a/b)2n−4. Then, Eq. (17)
becomes
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Since the data of one experiment determine only one equation for n, τ ′0, and K ′, to determine the parameters
of the model it is necessary to perform three experiments for different angular velocities of coaxial cylinders. As a
result, we obtain the system of three equations
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Dividing the first equation in (18) by the second and third equations, we obtain two equations for n1 and
τ ′0. For ∆ω′(1)ba/(∆ω′(2)ba) = 2 and ∆ω′(1)ba/(∆ω′(3)ba) = 4 and C

′(i)
1 = 1013/3xi, these equations become
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Expressing τ ′0 from Eq. (19) in terms of n and substituting it into Eq. (20), we obtain an equation for one variable n.
Using the iteration scheme nm+1 = nm + F (nm, τ ′0(nm)), one can find the root n.
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The stability of the algorithm was studied. In the interval n = 1.05–4, arithmetical means equal to the
deviations of n1, τ ′0, and K ′ from the exact values were calculated with a step of 0.05. For this purpose, 100
experiments with a random deviation of 1, 2, and 3% in xi were performed.

The calculations show that, in the entire range of n, the accuracy in determining τ ′0 is unsatisfactory for
small values of τ ′0 (the error exceeds 1000%), but this has little effect on the calculation of n and K ′. The values
of τ ′0 comparable to K are determined with a better accuracy. The possible reason is that, in the equation for τ ′0,
the terms containing τ ′0 are small compared to the first term, which is independent of this parameter.

If the moments deviate from the exact values by less than 1%, the measurement error does not exceed 10%.
For deviations of 2 and 3%, the error is smaller than 20 and 30%, respectively. The algorithm proposed can be used
for τ ′0 = 11,000–22,000 provided the other constants n and K ′ correspond to superplastic materials.

Verification of the Method Using Experimental Data. To verify the method proposed, experiments
were performed using the rotational viscometer Rheotest 2.1, in which the Couette flow was obtained. As a
viscoplastic material, we used a grease based on the I-40A industrial oil with surfactants and stiffeners. Experiments
were performed at t = 25 ◦C in the range of shear stresses of 30–170 Pa. The ratio of the inner and outer radii of
the coaxial cylinders was 0.98.

The following angular velocities were specified in the experiments: ∆ω1
ba = −25.434 sec−1, ∆ω2

ba =
−8.378 sec−1, and ∆ω3

ba = −4.71 sec−1. The following shear stresses corresponding to these velocities were recorded:
σ1
rϕ|r=a = c1/a

2 = 169.4 Pa, σ2
rϕ|r=a = 72.6 Pa, and σ3

rϕ|r=a = 49.7 Pa. Using the above-proposed method based
on solving a system of nonlinear algebraic equations, we found the dimensionless material constants n, τ0, and K ′.

For calculations, we used the characteristic values of the parameters τ = 10 Pa, ε̇ = 1 sec−1, and a = 1 cm
which correspond to the dimensionless parameters τ ′0 = 100τ0, c′1 = 100c1, and K ′ = 100K. The following material
constants were obtained: τ ′0 = 79.3, n = 3.73, and K ′ = 19.51. Since τ0 is of the same order as the parameter K,
the solution is expected to be stable, which is supported by the calculations considered above.

It was found that a 1% error in measuring the shear stresses leads to errors of 3, 2–6, and 3–10% in
determining the parameters n, τ ′0, and K ′, respectively. Since the material constants were unknown, a fourth
experiment was performed to solve the direct problem and compare the calculated shear stress with its experimental
value. For example, the shear stress was calculated to be σrϕ|r=a = 36.3 Pa for ∆ω4

ba = −2.926 sec−1. In solving
the direct problem, the shear stress was determined with a relative error of 5%, which shows that the method
developed provides a high accuracy.

The constants obtained by solving the exact equations for the same angular velocities and shear stresses
differ from the approximate values by 10% or smaller. Consequently, the approximate method can be used to
estimate the characteristics of a viscoplastic material.

Conclusions. An algorithm of identifying the model of a viscoplastic material from experimental data on
the Couette flow is proposed. It was found that the algorithm of determining the moment of rotation of coaxial
cylinders C(i)

1 is stable and converges in the range of τ ′0 studied. To find the solution with an accuracy of up to
10−9, 25 iterations are required. Equations for finding τ ′0 and n are such that a single root exists in the range of τ ′0
and n considered, whereas each curve of intersection of the function zi = Fi(x, y) with the plane zi = 0 is close to
a straight line.

Experimental verification of the method proposed by studying a viscoplastic grease under the conditions of
the Couette flow using a rotational viscometer shows that the material constants are determined with an accuracy
sufficient for practical purposes.
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